Five Principles for Soil Health

Christine Jones, PhD Founder, Amazing Carbon www.amazingcarbon.com

Over the last 150 years, many of the world's prime agricultural soils have lost between 30% and 75% of their carbon, adding billions of tonnes of CO_2 to the atmosphere (1). Losses of soil carbon significantly reduce the productive potential of the land and the profitability of farming. Soil degradation has intensified in recent decades, with around 30% of the world's cropland abandoned in the last 40 years due to soil decline (2). With the global population predicted to peak close to 10 billion by 2050, the need for soil restoration has never been more pressing.

Soil dysfunction also impacts on human and animal health. It is sobering to reflect that over the last seventy years, the level of every nutrient in almost every kind of food has fallen between 10 and 100%. An individual today would need to consume <u>twice</u> as much meat, <u>three</u> times as much fruit and <u>four to five</u> times as many vegetables to obtain the same amount of minerals and trace elements as available in those same foods in 1940.

Dr David Thomas (3, 4) provided a comprehensive analysis of historical changes in food composition from tables published by the Medical Research Council, Ministry of Agriculture, Fisheries and Foods and the Food Standards Agency. By comparing data available in 1940 with that in 1991, Thomas demonstrated a substantial loss in mineral and trace element content in every group of foods investigated.

Mineral depletion in vegetables 1940 - 1991

Average of 27 kinds of vegetables

- Copper declined by 76%
- Calcium declined by 46%
- Iron declined by 27%
- Magnesium declined by 24%
- Potassium declined by 16%

Mineral depletion in meat 1940 - 1991

Average of 10 kinds of meat

- Copper declined by 24%
- Calcium declined by 41%
- Iron declined by 54%
- Magnesium declined by 10%
- Potassium declined by 16%
- Phosphorus declined by 28%

<u>Source:</u> Thomas, D.E. (2003). A study of the mineral depletion of foods available to us as a nation over the period 1940 to 1991. *Nutrition and Health*, 17: 85–115.

The nutrient depletion summarised in Thomas's review represents a weighted average of mineral and trace element changes in 27 kinds of vegetables and 10 kinds of meat.

Significant mineral and trace element depletion was also recorded in the 17 varieties of fruit and two dairy products tested over the same period (3).

The mineral depletion in meat and dairy reflects the fact that animals are consuming plants and/or grains that are themselves minerally depleted.

In addition to the overall decline in nutrient density, Thomas found significant changes in the ratios of minerals to one another. Given that there are critical ratios of minerals and trace elements for optimum physiological function, it is highly likely that these distorted ratios impact on human health and well being (3).

Restoring nutrient density to food

It is commonly believed that the significant reduction in the nutrient density of today's food is due to the 'dilution effect'. That is, as yield increases, mineral content falls. However, compromised nutrient levels are <u>not</u> observed in high-yielding vegetables, crops and pastures grown in biologically active soils. Indeed, the opposite applies.

Only in rare instances are minerals and trace elements completely absent from soil. Most of the 'deficiencies' observed in plants and animals are due to soil conditions not being conducive to nutrient uptake. Applying chemical fertilisers to correct so-called deficiencies is an inefficient practice. Rather, we need to address the biological causes of dysfunction.

Around 85 to 90% of plant nutrient acquisition is microbially mediated. The soil's ability to support nutrient dense, high vitality crops, pastures, fruit and vegetables requires the presence of a diverse array of soil microbes from a range of functional groups.

The majority of microbes involved in nutrient acquisition are plant-dependent. That is, they respond to carbon compounds exuded by the roots of actively growing green plants. Many of these important groups of microbes are negatively impacted by the use of 'cides' - herbicides, pesticides, insecticides, fungicides.

In short, the functioning of the soil ecosystem is determined by the presence, diversity and photosynthetic rate of actively growing green plants - as well as the presence or absence of chemical toxins.

But who manages the plants - and the chemicals?

You guessed it ... we do.

It is up to us to restore soil integrity, fertility, structure and water-holding capacity - not by applying 'bandaids' to the symptoms, but by the way we manage our food production systems.

The key to restoration is to get the basics right.

"There can be no life without soil and no soil without life; they have evolved together" (Charles E. Kellogg, USDA Yearbook of Agriculture, 1938).

Five Principles for Soil Health

1. The power of photosynthesis

Imagine there was a process that could remove carbon dioxide from the atmosphere, replace it with life-giving oxygen, support the soil microbiome, regenerate topsoil, restore water balance to the landscape, enhance the nutrient density of food and increase the profitability of agriculture?

Fortunately, there is.

It's called photosynthesis.

In the miracle of photosynthesis, which takes place in the chloroplasts of green leaves, carbon dioxide (CO_2) from the air and water (H_2O) from the soil, are combined to capture light energy and transform it to biochemical energy in the form of simple sugars.

These simple sugars - commonly referred to as 'photosynthate' - are the building blocks for life in and on the earth. Plants transform sugar to a great diversity of other carbon compounds, including starches, proteins, organic acids, cellulose, lignin, waxes and oils.

Fruits, vegetables, nuts, seeds and grains are basically 'packaged sunlight' derived from photosynthesis. The oxygen our cells and the cells of other living things utilise during aerobic respiration is also derived from photosynthesis. We have a lot to thank green plants for!!

In addition to supporting the majority of life on earth, many of the carbon compounds derived from the simple sugars formed in photosynthesis are essential to the creation of well-structured topsoil from the lifeless mineral soil produced by the weathering of rocks.

Without photosynthesis there would be no soil. Weathered rock minerals, yes ... but fertile topsoil, no.

While every green plant is a solar-powered carbon pump, simply having green plants is not enough. It is the <u>photosynthetic capacity</u> and <u>photosynthetic rate</u> of living plants (rather than their biomass) that drive the biosequestration of stable soil carbon.

Photosynthetic capacity: the amount of light intercepted by green leaves in a given area. Determined by percentage canopy cover, plant height, leaf area, leaf shape and seasonal growth patterns. On agricultural land, photosynthetic capacity can be improved through the use of multi-species cover crops and animal integration, multi-species pastures and strategic grazing. In parks and gardens plant diversity and mowing height are important factors. Bare soil has no photosynthetic capacity. Bare soil is also a net carbon source and is vulnerable to erosion by wind and water.

Photosynthetic rate: the rate at which plants are able to convert light energy to sugars. Determined by many factors including light intensity, moisture, temperature, nutrient availability and the demand placed on plants by microbial symbionts. The presence of mycorrhizal fungi, for example, can significantly increase photosynthetic rate. Plants photosynthesising at an elevated rate have a high sugar and mineral content, are less prone to pests and diseases and contribute to improved weight gains in livestock. Photosynthetic rate can be assessed by measuring Brix with a refractometer. The use of high-analysis nitrogen and phosphorus fertilisers can have a detrimental impact on photosynthetic rate.

Both photosynthetic capacity and photosynthetic rate are strongly impacted by management.

Grazing management: This topic requires far more space than available here, but it is vitally important that <u>less than 50%</u> of the available green leaf be grazed (Fig.1). Retaining adequate leaf area reduces the impact of grazing on photosynthetic capacity and enables the rapid restoration of biomass to previous levels. Over a 12 month period significantly more forage will be produced if pastures are grazed 'tall' rather than 'short'.

Fig. 1. Growth of both tops and roots is significantly impaired if more than 50% of the green leaf area is removed in a single grazing event (5).

Relationship between leaf area removed and impact on roots (6):

Up to 40% leaf area removed = no effect on root growth 50% leaf area removed = 2-4% root growth inhibition 60% leaf area removed = 50% root growth inhibition 70% leaf area removed = 78% root growth inhibition 80% leaf area removed = 100% root growth inhibition 90% leaf area removed = 100% root growth inhibition

In addition to leaf area, the height of pasture has a significant effect on soil building, moisture retention, nutrient cycling and water quality. To maintain photosynthetic capacity (and ensure rapid recovery) it is highly beneficial to remove livestock from a pasture before you can see their feet.

Crop production. Increasingly sophisticated machinery and a plethora of 'cides' have provided the means for the planet's rapidly expanding population to create bare ground, dramatically reducing photosynthetic capacity over billions of hectares. Reduced levels of photosynthesis have resulted in reduced carbon flow to soil, significantly impacting on soil and landscape function, as well as farm productivity.

One of the most significant findings to emerge in recent years has been the improvements to infiltration, water-holding capacity and drought resilience when bare fallows have been replaced with multi-species covers. This improvement has been particularly evident in lower rainfall regions and in dry years.

A healthy agricultural system is one that supports all forms of life. All too often, many of the life forms in soil have been considered dispensable. Or more correctly, have not been considered at all.

2. Microbes matter!!

It comes as a surprise to many to learn that over 95% of life on land resides <u>in</u> soil. Indeed, the soil microbiome has been heralded as the new frontier in agricultural research, in parallel with the gut microbiome being recognised as the new frontier in human health.

Most of the energy for this amazing world beneath our feet is derived from plants. Exudates from living roots are the most carbon-rich of these energy sources.

In exchange for 'liquid carbon' (7), microbes in the vicinity of plant roots - and microbes linked to plants via mycelial networks (8) - increase the availability of the minerals and trace elements required to maintain the health and vitality of their hosts.

Vigorous root systems and beneficial relationships with mycorrhizal fungi and other plant-associated soil biota are essential for maximising the ability of crop and pasture plants to obtain water, nitrogen, phosphorus, potassium, sulphur, calcium, magnesium and a wide variety of trace elements including copper, cobalt, zinc, molybdenum and boron.

Many of these elements are essential for resistance to pests and diseases and resilience to climatic extremes such as drought, waterlogging and frost.

Soil function is also strongly influenced by its structure. In order for soil to be well structured, it must be living. Life in the soil provides the glues and gums that enable soil particles to stick together into pea-sized lumps called aggregates. The spaces between the aggregates allow moisture to infiltrate more easily. Moisture absorbed into soil aggregates is protected from evaporation, so that soil remains moister for longer after rain or irrigation. This improves farm productivity and profit.

Well-structured soils are also less prone to erosion and compaction and function more effectively as bio-filters.

All living things - above and below ground - benefit when the plant-microbe bridge is functioning effectively.

Sadly, many of the microbes important for soil function have gone missing in action. Can we get them back? Some producers have achieved large improvements in soil health in a relatively short time. What are these farmers doing differently?

They diversify.

3. Diversity is not dispensable!!!

The natural grasslands that once covered vast tracts of the Australian, North American and sub-Saharan African continents - plus the 'meadows' of Europe - contained several

hundred different kinds of grasses and forbs. These diverse grasslands and meadows were extremely productive prior to simplification through overgrazing and/or cultivation.

Every plant exudes its own unique blend of sugars, enzymes, phenols, amino acids, nucleic acids, auxins, gibberellins and other biological compounds, many of which act as signals to soil microbes. Root exudates vary continuously over time, depending on the plant's immediate requirements. The greater the diversity of plants, the greater the diversity of microbes and the more robust the soil ecosystem.

The belief that monocultures and intensively managed systems are more profitable than diverse biologically-based systems does not hold up in practice. Monocultures need to be supported by high and often increasing levels of fertiliser, fungicide, insecticide and other chemicals that inhibit soil biological activity. The result is even greater expenditure on agrochemicals in an attempt to control the pest, weed, disease and fertility 'problems' that ensue.

Innovative farmers are experimenting with up to 60 to 70 different plant species to see which combinations perform best for soil restoration. Some grain and vegetable producers are setting aside up to 50% of their cash crop area for multi-species 'soil primers'. They believe the benefits far outweigh the costs. It has been reported that two full seasons of a multi-species cover can perform miracles in terms of soil health.

However, it doesn't need to be complicated. Something as simple as including one or two companions with a cash crop can make a world of difference.

Indeed, it is becoming increasingly common to see peas with canola, clover or lentils with wheat, soybean and/or vetch with corn, buckwheat and/or peas with potatoes ... and so on.

An aspect of plant community structure that is gaining increased research attention is the presence of 'common mycorrhizal networks' (CMNs) in diverse pastures, crops and vegetable gardens. It has been found that plants in communities assist each other by linking together in vast underground superhighways through which they can exchange carbon, water and nutrients (10,11). Common mycorrhizal networks increase plant resistance to pests and diseases (12) as well as enhancing plant vigour and improving soil health.

In my travels I've seen many examples of monocultures wilting while diverse multispecies crops beside them remained green (Fig. 3).

Fig. 3. Triticale monoculture (left foreground) suffering severe water stress while triticale sown with other species (background and right) is powering. In addition to triticale, the 'cocktail crop' contained oats, tillage radish, sunflower, field peas, faba beans, chickpeas, proso millet and foxtail millet. Chinook Applied Research Association (CARA), Oyen, Alberta.

For a great little blog on the drought tolerance benefits of 'plant communes' see reference 13 at the end of this document.

As well as improving soil function, companion plants provide habitat and food for insect predators. Recent research (14) has shown that as the diversity of insects in crops and pastures increases, the incidence of insect pests declines, hence avoiding the need for insecticides.

In livestock production systems, animal health issues linked to lack of plant diversity (and hence animal nutrition) can often mean the difference between profit and loss.

4. Limit chemical use

The mineral cycle improves significantly when soils are alive. It has been shown, for example, that mycorrhizal fungi can supply up to 90% of plants N and P requirements (15). In addition to including companions and multi-species covers in crop rotations, maintaining a living soil often requires that rates of high-analysis synthetic fertiliser and other chemicals be reduced, to enable microbes to do what microbes do best.

Profit is the difference between expenditure and income. In years to come we will perhaps wonder why it took so long to realise the futility of attempting to grow crops in dysfunctional soils, relying solely on increasingly expensive synthetic inputs.

No amount of NPK fertiliser can compensate for compacted, lifeless soil with low wettability and low water-holding capacity. Indeed, adding more chemical fertiliser often makes things worse. This is particularly so for phosphorus (P) and nitrogen (N). An often overlooked consequence of the application of high rates of N and P is that plants no longer need to channel liquid carbon to soil microbial communities in order to obtain these essential elements. Reduced carbon flow has a negative impact on soil aggregation - as well as limiting the energy available to the microbes involved in the acquisition of important minerals and trace elements.

Inorganic P: The application of large quantities of water-soluble P, such as found in MAP, DAP and superphosphate inhibits the production of a plant hormone called strigolactone. Strigolactone increases root growth, root hair development and colonisation by mycorrhizal fungi, enabling plants to better access soil P (16). The long-term consequence of the inhibition of strigolactone is destabilisation of soil aggregates, increased soil compaction and mineral-deficient (eg low selenium) plants and animals.

In addition to having adverse effects on soil structure, plant health and the nutrient density of food, the application of high rates of inorganic water-soluble phosphorus is highly inefficient. At least 80% of applied P rapidly adsorbs to aluminium and iron oxides and/or forms calcium, aluminium or iron phosphates. In the absence of microbial activity, these forms of P are not plant available (16).

It is widely recognised that only 10-15% of fertiliser P is taken up by crops and pastures in the year of application. If fertiliser P has been applied for the previous 10 years, there will be sufficient for the next 100 years, irrespective of how much was in the soil to begin. Rather than apply P, it is far better to activate soil microbes in order to access the P already there.

Mycorrhizal fungi are extremely important for increasing the availability of soil P. Their abundance can be significantly improved through cover crops, diversity and appropriate grazing management.

Inorganic N: The other element commonly added to soil is nitrogen. The use of highanalysis N fertiliser poses a significant cost to both farmers and the environment, as only 10 to 40% is taken up by plants, with 60 to 90% of applied N lost through a combination of volatilisation and leaching (17).

One of the many unintended consequences of the use of nitrogen fertiliser is the production of nitrous oxide in water-logged and/or compacted soils. Nitrous oxide is a greenhouse gas with almost 300 times the global-warming potential of carbon dioxide.

It is often assumed that nitrogen comes only from fertiliser or legumes. However, all green plants are capable of growing in association with nitrogen-fixing microbes. Even when N fertiliser is applied, plants obtain much of their N from microbial associations.

Farmers experimenting with 'yearlong green' farming techniques are discovering that their soils develop the innate capacity to fix atmospheric nitrogen. However, if high rates of N fertiliser have been used for some time, it is important to wean off N slowly (17), as free-living nitrogen fixing bacteria require time to re-establish.

5. Avoid aggressive tillage

Tillage may provide an apparent 'quick-fix' to soil problems created by lack of deeprooted living cover, but repeated and/or aggressive tillage increases the susceptibility of the soil to erosion, depletes soil carbon and organic nitrogen, rapidly mineralises soil nutrients (resulting in a short-term flush but long-term depletion) and is highly detrimental to beneficial soil-building microbes such as mycorrhizal fungi - as well as keystone invertebrates such as earthworms.

Conclusion

Over the last 150 years, human activities have resulted in significantly less photosynthetic capacity - that is, green groundcover - on the earth's surface, while also impacting on the photosynthetic rate of the groundcover that remains.

The movement of carbon from the atmosphere to soil - via green plants - represents the most powerful tool we have at our disposal for the restoration of soil function

Our role, in the community of living things of which we are part, is to ensure that the way we manage green plants results in as much sunlight energy as possible being transferred to, and maintained in, the soil battery. This is the process that will drive farm productivity, restore landscape function and increase resilience to climatic variability.

Remember, only plants and their associated microbes can make fertile topsoil - and a diversity of plants and microbes makes it even better!!

.....

Literature Cited

- Lal, R., Follett, R.F., Stewart, B.A. and Kimble, J.M. (2007). Soil carbon sequestration to mitigate climate change and advance food security. *Soil Science*, 172 (12), pp. 943-956. doi: 10.1097/ss.0b013e31815cc498
- 2. Pimentel, D. and Burgess, M. (2013). Soil erosion threatens food production. *Agriculture 2013*, 3, 443-463; doi:10.3390/agriculture3030443
- 3. Thomas, D.E. (2003). A study of the mineral depletion of foods available to us as a nation over the period 1940 to 1991. *Nutrition and Health*, 17: 85–115.
- 4. Thomas, D.E. (2007). The mineral depletion of foods available to us as a nation (1940-2002) a review of the 6th Edition of McCance and Widdowson. *Nutrition and Health*, 19: 21-55.
- 5. Voth, K. (2015). Great "Grass Farmers" Grow Roots. *National Grazing Lands Coalition.* <u>http://onpasture.com/2015/11/09/great-grass-farmers-grow-roots/#!prettyPhoto</u>
- Crider, F.J. (1955). Root growth stoppage resulting from defoliation of grass. U.S. Department of Agriculture Technical Bulletin 1102, 23 p. <u>http://babel.hathitrust.org/cgi/pt?id=uiug.30112019332508;view=1up;seg=1</u>
- 7. Jones, C.E. (2008). Liquid carbon pathway. *Australian Farm Journal*, July 2008, pp. 15-17. www.amazingcarbon.com

- Kaiser, C., Kilburn, M. R., Clode, P. L., Fuchslueger, L., Koranda, M., Cliff, J. B., Solaiman, Z. M. and Murphy, D. V. (2015), Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. *New Phytologist*, 205: 1537–1551. doi:10.1111/nph.13138.
- 9. Natura, H. (undated). Illinois Native Plant Guide. Root systems of prairie plants.
- 10. The Plant Guy (2012). Plant 'Social Networks'- is this why companion planting & intercropping work? <u>http://www.howplantswork.com/2012/06/13/plant-social-networks-is-thiswhy-companion-planting-inter-cropping-work/</u>
- Walder, F., Niemann, H., Natarajan, M., Lehmann, M.F., Boller, T. and Wiemken, A. (2012). Mycorrhizal Networks: Common Goods of Plants Shared under Unequal Terms of Trade. *Plant Physiology*, 159(2): 789–797. doi: 10.1104/pp.112.195727
- 12. Johnson, D. and Gilbert, L. (2014). Interplant signalling through hyphal networks. *New Phytologist*, 205(4): 1448-1453. doi: 10.1111/nph.13115
- 13. Kelly (2014). Who Knew? Cover Crop Cocktails are Commune Hippies. <u>https://farmingsweetbay.wordpress.com/2014/06/24/who-knew-cover-crop-cocktails-are-commune-hippies/</u>
- 14. Lundgren, J.G and Fausti S.W. (2015). Trading biodiversity for pest problems. *Science Advances* 1(6). doi: 10.1126/sciadv.1500558
- 15. Smith, S.E, Read, D.J. (2008). Mycorrhizal Symbiosis, 3rd Edition. Academic Press.
- Czarnecki, O., Yang, J., Weston D.J., Tuskan, G.A. and Chen, J.G. (2013). A dual role of strigolactones in phosphate acquisition and utilization in plants. *International Journal of Molecular Sciences*, 14: 7681-7701; doi:10.3390/ijms14047681
- 17. Jones, C.E. (2014). Nitrogen: the double-edged sword. *WANTFA New Frontiers in Agriculture.* Winter 2014, pp. 58-61. <u>www.amazingcarbon.com</u>

.....

Acknowledgement. Special thanks to Sarah Troisi for expert technical assistance with the photographs used in this article.

About the author

To the pressing worldwide challenge of restoring topsoil, soil ecologist Dr Christine Jones offers an accessible, inspiring perspective. For several decades Christine has worked with innovative farmers and graziers implementing regenerative land management practices that enhance biodiversity, nutrient cycling, carbon sequestration, productivity, water quality and community and catchment health. Following a highly respected career in public sector research and extension, Christine received a Community Fellowship Award from Land and Water Australia in 2001 for 'mobilising the community to better manage land, water and vegetation.' Three years later she launched 'Amazing Carbon' as a means to share her

vision and inspire change. In 2005 Christine held the first of five 'Managing the Carbon Cycle' forums to promote the benefits of soil carbon. Over the past decade she has gained international recognition as a speaker, presenting on 'The Fundamentals of Soil' at workshops, field days, seminars and conferences throughout Australia, New Zealand, South Africa, Western Europe, Central America, USA and Canada.